МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждениевысшего образования «Вологодская государственная молочнохозяйственная академия имени Н.В. Верещагина»

Факультет агрономии и лесного хозяйства

Кафедра растениеводства, земледелия и агрономии

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВЫ БИОТЕХНОЛОГИИ

Направление подготовки 35.03.04 Агрономия

Профиль подготовки Технологии производства продукции растениеводства

Квалификации выпускника бакалавр

ЛИСТ СОГЛАСОВАНИЙ

Программа составлена в соответствии с требованиями $\Phi \Gamma OC$ ВО по направлению подготовки 35.03.04 Агрономия, профиль Технологии производства продукции растениеводства.

Разработчик, к.с.х.н., доцент Куликова Е.И.

Программа одобрена на заседании кафедры растениеводства, земледелия и агрохимии от 25.01.2024 г, протокол № 6.

Зав. кафедрой, к.с.х.н., доцент Куликова Е.И.

Рабочая программа дисциплины согласована на заседании методической комиссии факультета агрономии и лесного хозяйства от 15.02.2024 г, протокол № 6.

Председатель методической комиссии, к.с.х.н., доцент Демидова А.И.

1. Цель и задачи учебной дисциплины

Цель изучения дисциплины "Основы биотехнологии" освоение студентами теоретических знаний о клеточной биотехнологии, культуре invitro, знать основы молекулярной биотехнологии и генной инженерии.

Задачи дисциплины:

- 1.Ознакомить студента с основными достижениями биотехнологии. Познакомить с методами генетической инженерии растений и использовании новых форм растений в сельском хозяйстве.
- 2.Обучить студента принципиально новому методу вегетативного размножения клональномумикроразмножению (получение в условиях invitro (в стерильных условиях) растений, генетически идентичных исходному экземпляру).

2. Место учебной дисциплины в структуре ООП

Дисциплина Б1.О.33 «**Основы биотехнологии**» относится к математическому и естественному научному циклу, вариативной части дисциплин по выбору федерального государственного образовательного стандарта высшего профессионального образования по направлению подготовки 35.03.04 «Агрономия»

К числу **входных знаний, навыков и компетенций** студента, приступающего к изучению дисциплины, должно относиться следующее: студент должен быть способен использовать основы математики, физики, химии, ботаники и микробиологии.

Освоение учебной дисциплины сельскохозяйственная биотехнология базируется на знаниях и умениях, полученных студентами при изучении таких дисциплин как "Ботаника", "Генетика", "Физиология и биохимия растений", "Микробиология". Знания, умения и навыки, формируемые данной учебной дисциплиной, необходимы для изучения последующих дисциплин «Основы селекции и семеноводства», «Растениеводство», «Кормопроизводство и луговодство», а также являются базой для эффективного прохождения производственной практики на сельскохозяйственных предприятиях области.

3. Компетенции обучающегося, формируемые в результате освоения учебной дисциплины

Процесс изучения дисциплины сельскохозяйственная биотехнология направлен на формирование следующих компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции				
ОПК-4 Способен реализовывать современные технологии и	ИД-1 _{опк-4} Знает основы молекулярной биологии, сущность и задачи генетической инженерии в растениеводстве, культуру клеток, тканей и органов, процессы регуляции и саморегуляции у растений;				
обосновывать их применение в профессиональной деятельности;	ИД-2 _{опк-4} Умеет получать безвирусный материал растений, ИД-3 _{опк-4} Владеет методиками синтеза незаменимых аминокислот, производства кормовых дрожжей и белков из водорослей и грибов.				

4. Структура и содержание учебной дисциплины

Общая трудоёмкость дисциплины составляет 3 зачётные единицы

4.1 Структура учебной дисциплины:

Deve versative in a figure	Dagra vacan	Форма обучения		
Вид учебной работы	Всего часов	онно	заочно	
Аудиторные занятия (всего)	51	51	10	
В том числе:				
Лекции	17	17	2	
Практические занятия	34	34	8	
Лабораторные работы				
Самостоятельная работа (всего), в том числе подготовка к экзамену	49	49	94	
(контроль)	8	8	4	
Вид промежуточной аттестации	зачет	зачет	зачет	
Общая трудоёмкость, часы	108	108	108	
Зачётные единицы	3	3	3	

4.2 Содержание разделов учебной дисциплины

Раздел 1. Введение в сельскохозяйственную биотехнологию.

История возникновения и развития биотехнологии. Традиционная и новая биотехнология. Предмет и методы сельскохозяйственной биотехнологии. Связь биотехнологии с другими биологическими и сельскохозяйственными науками. Роль биотехнологии в ускорении научно-технического прогресса в агропромышленном производстве. Приоритетные направления и мировой уровень биотехнологии как науки и отрасли производства.

Раздел 2.Основы молекулярной биологии, молекулярной генетики и геномики.

Предмет и методы молекулярной биологии и молекулярной генетики. Состав и свойства нуклеиновых кислот как носителей генетической информации. Роль молекулярной биологии в развитии биоинженерии и биотехнологии.

Молекулярные основы наследственности. Нуклеиновые кислоты - пуриновые и пиримидиновые основания. Полиморфизм ДНК.

Репликация ДНК. Репарация ДНК. Рекомбинация ДНК. Генетический код. Основные свойства генетического кода. Система трансляции invitro.

Раздел 3 Генетическая инженерия растений.

Сущность и задачи генетической инженерии. Виды и особенности векторов. Методы прямого переноса генетической информации. Проблемы экспрессии трансформированных генов. Перенос генов изолированными метафазными хромосомами. Основные проблемы получения трансгенных растений.

Раздел 4 Применение методов invitro в селекции растений.

Основные и вспомогательные методы. Использование методов invitro для размножения нежизнеспособных гибридов. Оплодотворение invitro. Получение гаплоидных растений. Культивирование изолированных пыльников, пыльцы и микроспор. Андрогенез, партеногенез, гиногенез.

Раздел 5Культивирование клеток и тканей.

Сущность и задачи клеточной биотехнологии. Культивирование изолированных клеток, тканей и органов в условиях invitro. История развития метода. Объект и методы исследований.

Питательные среды, их составление. Источники получения эксплантов.

Каллусная ткань как основной объект исследований. Дедиференцировка как обязательное условие перехода специализированной клетки к делению и образованию каллусной ткани. Гормоны, индуцирующие дедиференцировку

Раздел 6 Клональноемикроразмножение и оздоровление растений.

Применение методов invintro для размножения и оздоровления посадочного материала. Преимущества метода клональногомикроразмножения.

Классификация методов клональногомикроразмножения.

Технология получения безвирусного посадочного материала на примере картофеля, земляники. Особенности клональногомикроразмножения цветочных, плодово-ягодных, древесных лиственных и хвойных растений.

4.3. Разделы учебной дисциплины и вид занятий

№ п.п.	Наименование разделов учебной дисциплины	Лекции	Практ. занятия	Лабор. занятия	CPC	Контроль	Всего
1	Введение в сельскохозяйственную биотехнологию	2	2		4	1	9
2	Основы молекулярной биологии,	4	4		4	1	13
3	Генетическая инженерия растений	2	4		4	1	11
4	Применение методов invitro в селекции растений	2	4		4	1	11
5	Культивирование клеток и тканей	5	6		8	2	21
6.	Клональноемикроразмн ожение и оздоровление растений	2	14		6	2	24
	Всего	17	34		49	8	108

5. Матрица формирования компетенций по дисциплине

	матрица формирования компетенции по дисципли	Общепрофес-	Общее
$N_{\underline{0}}$	n	сиональные	количество
п.п.	Разделы, темы дисциплины	компетенции	компетенций
		ОПК-4	
1	Введение в сельскохозяйственную биотехнологию	+	1
2	Основы молекулярной биологии, молекулярной	+	1
	генетики и геномики		
3	Генетическая инженерия растений	+	1
4	Применение методов invitro в селекции растений	+	1
5	Культивирование клеток и тканей	+	1
6	Клональноемикроразмножение и оздоровление	+	1
	растений		

6. Образовательные технологии

Объем аудиторных занятий всего 51 часа, в т.ч. лекции 17 часов, практические занятия 34 часов.

28% — занятия в интерактивных формах от объема аудиторных занятий. (Согласно ФГОС по направлению подготовки 35.03.04 «Агрономия» не менее 20% занятий должно проводиться в интерактивной форме)

Семестр	Вид занятия (Л, ПЗ, ЛР и др.)	Используемые интерактивные образовательные технологии и тема занятия	Количество часов
3	Л	Проблемная лекция «Генная инженерия. За и	4
		против»	
	ПР	Коллективная работа в группе «Составление	4
		питательных сред для культивирования клеток и	
		тканей»	
	ЛР	Интерактивное путешествие «Технология	10
		микроклонирования цветов, земляники и	
		картофеля»	
Итого:	•		18

Примеры интерактивных форм и методов проведения занятий: ролевые и деловые игры, тренинг, игровое проектирование, компьютерная симуляция, лекция (проблемная, визуализация и др.), дискуссия (с «мозговым штурмом» и без него), программированное обучение и др.

7. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Контрольные вопросы для итоговой аттестации (зачет)

- 1. Какие главные направления использования культуры изолированных клеток и тканей растений в биотехнологии?
- 2. Основные компоненты питательных сред, используемых для каллусогенеза?
- 3. Каллусная ткань. Способ получения каллусной ткани.
- 4. Понятие дедиференцировки клеток. Почему она является обязательным условием перехода специализированной клетки к делению и каллусообразованию.
- 5. Пассирование. Необходимость пассированиякаллусной ткани.
- 6. Что представляют собой «опухолевые» и «привычные» ткани? Их сходство и различие с каллусными.
- 7. Причины неоднородности каллусных клеток.
- 8. Понятие «соматическая гибридизация» Особенности получения и культивирования изолированных протопластов.
- 9. Тотипотентность каллусных клеток.
- 10. Основные типы морфогенеза в культуре каллусных клеток.
- 11. Основные этапы соматического эмбриогенеза.
- 12. Как получают и используют культуру клеточных суспензий.
- 13. Возможности клеточной селекции.
- 14. Клональноемикроразмножение растений.

- 15. Основные этапы клональногомикроразмножения растений.
- 16. Пути оздоровления посадочного материала от вирусов.
- 17. Условия, обеспечивающие микроразмножение растений.
- 18. Влияние генотипа и возраста первичного эксплантанта на микроразмножение.
- 19. Репликация ДНК.
- 20. Репарация ДНК.
- 21. Рекомбинация.
- 22. Генетический код.
- 23. Транскрипция.
- 24. Трансляция.
- 25. Конструирование рекомбинантных ДНК
- 26. Понятие фитогормонов.
- 27. Механизм действия фитогормонов.
- 28. Классификация фитогормонов.
- 29. Синтетические регуляторы роста и их классификация.
- 30. Регуляция органогенеза.
- 31. Фиторегуляторы в системе защиты растений.
- 32. Применение регуляторов роста и развития растений при возделывании с/х культур.
- 33. Экологическая безопасность применения регуляторов роста растений.
- 34. Генетическая безопасность применения регуляторов роста растений.
- 35. Перспективы применения фиторегуляторов в растениеводстве.

Для проведения текущей аттестации могут также применяться тестовые задания.

- 1. Каллусная ткань состоит из клеток:
 - а) дифференцированных;
- б) паренхимных;
- в) дедифференцированных;
- г) половых.
- 2. Каллусную ткань можно получить из:
 - а) стебель;
- б) почек;
- в) пыльников; г) всех частей растений, перечисленных выше.
- 3. Какое соотношение гормонов регулирует процесс ризогенеза в каллусной ткани:
 - а) ауксинов больше, чем цитокининов;
 - б) цитокининов больше, чем ауксинов;
 - в) цитокининов больше, чем абсцизовой кислоты;
 - г) цитокининов столько же, сколько и ауксинов.
- 4. Какое соотношение гормонов регулирует процесс образования адвентивных почек и каллусной ткани:
 - а) ауксинов больше, чем цитокининов;
 - б) цитокининов больше, чем ауксинов;
 - в) цитокининов больше, чем абсцизовой кислоты;
 - г) цитокининов столько же, сколько и ауксинов.
- 5. Как часто каллусную ткань пересаживают на свежую питательную среду:
 - а) через 1 неделю;
 - б) через 2 недели;
 - в) через 3 недели;
 - г) через 5 недель.
- 6. На какой из фаз ростового цикла наблюдается прирост каллусной ткани с ускорением:
 - а) на латентной фазе;
- б) на логарифмической фазе;
- в) на стационарной фазе; г) на линейной фазе.
- 7. Гетерогенность каллусной ткани вызывают:

- а) первичный эксплант;
- б) состав питательной среды;
- в) число субкультивирований;
- г) все факторы, перечисленные выше.
- 8. Какое время необходимо для автоклавирования питательной среды при температуре 120^0 и давлениии 1 атм:
 - а) 10 минут; б) 20 минут;
 - в) 30 минут; г) 40 минут.
- 9. Молодые, активно растущие ткани выдерживают в стелиризующем растворе:
 - а) 3...5 минут;
- б) 8...10 минут;
- в) 10...12 минут;
- г) 15...18 минут.
- 10. Одревесневшие ткани стебля выдерживают в стелиризующем растворе:
 - а) 4...6 минут;
- б) 6...8 минут;
- в) 8...10 минут;
- г) 10...15 минут.
- 11. Сколько существует этапов клональногомикроразмножения:
 - a) 2; б) 3;
 - в) 4; г) неограниченное количество.
- 12. Какой коэффициент размножения может быть получен при клональноммикроразмножении картофеля в течение года:
 - а) 100 растений;
- б) 1000 растений;
- в) 10 000 растений;
- г) 100 000 растений и более.
- 13. Какие приемы необходимо применять для оздоровления посадочного материала от вирусов:
 - а) хемиотерапию;
- б) термотерапию;
- в) изолированные мерисистемы; г) все приемы, перечисленные выше.
- 14. При адаптации пробирочных растений:
 - а) растения пересаживают в почву с легким гранулометрическим составом;
 - б) корни отмывают от остатков питательной среды;
 - в) растения подкармливают минеральными солями;
 - г) проводят все мероприятия, перечисленные выше.
- 15. Какой температурный режим создают при хранении растительных тканей в жидком азоте:
 - a) -150° C;
- б) -196^{0} С:
- $B) 200^{\circ} C;$
- Γ) 210⁰ C.
- 16. Соматическая гибридизация это слияние:
 - а) соматических клеток;
- б) протопластов;
- в) каллусных клеток;
- г) клеток суспензионной культуры.
- 17. Какие факторы относятся к абиотическим:
 - а) засоление;
 - б) заморозки;
 - в) ультрафиолетовое излучение;
 - г) все факторы, перечисленные выше.
- 18. Какие факторы относятся к биотическим:
 - а) фитопатогены:
- б) засоление;
- в) эрозия почв;
- г) заморозки.
- 19. Что необходимо добавить в питательную среду, чтобы получить растения картофеля, устойчивые к фитопатогенам:
 - a) NaCl;
- δ) CdNo_{3:}
- в) токсин;
- г) KNO₃.
- 20. Какие селективные факторы применяют при клеточной селекции

в) культуральную жидкость; г) все факторы, перечисленные выше. 21. Какой из перечисленных этапов криосохранения происходит быстро: а) замораживание; б) размораживание; в) проверка на жизнеспособность; г) все факторы, перечисленные выше. 22. При выделении тотальной РНК большинство молекул в полученном препарате составляют: а) мРНК и тРНК; б) мРНК и рРНК; г) соотношение всех типов РНК равны. в) тРНК и рРНК; 23. Какие рестрицирующиеэндонуклеазы наиболее часто используют при клонировании и анализе генома: а) І типа; б)ІІ типа; в) III типа; г) ІиIII типа. 24.Скорость движения фрагментов ДНК в агарозном геле зависит только от: а) концентрации агарозы в геле; б) размера молекулы и от концентрации агарозы в геле: в) напряженности электрического поля; г) размера молекулы, концентрации агарозы, напряженности электрического поля, и конформации молекул ДНК. 25. Визуализировать ДНК в агарозном геле можно после окраски геля: а) бромистым этидием; б) бромфеноловым синим; в) ауксином; г) цитокинином. 26. Что такое репарация ДНК: а) самоудвоение; б) переписывание информации на мРНК; г) разделение на гены. в) самокоррекция; 27. Что такое репликация ДНК: а) самоудвоение; б) переписывание информации на мРНК; в) самокоррекция; г) разделение на гены. 28. Какой триплет (кодон) мРНК соответствует генетическому коду ДНК – АТЦ: а) ЦАГ: б) ТАГ: в) УТЦ; г) УАГ. 29. Какой триплет (кодон) мРНК соответствует генетическому коду ДНК – ТТА: а) ЦЦУ; б) AAT; в) ГГ; г) ААУ 30. Какой триплет (кодон) мРНК соответствует генетическому коду ДНК – ЦЦТ: a) AAУ; б) ГГУ; в) TTA; Γ) ΓΓΑ 31. Что такое транскрипция при биосинтезе белка: а) самоудвоение ДНК; б) переписывание информации с ДНК на мРНК; в) самокоррекция ДНК; г) разделение нуклеиновых кислот на гены.

б) фитопатоген;

на устойчивость растений к фитопатогенам:

а) фитотоксины;

- 8. Учебно-методическое и информационное обеспечение дисциплины.
- 8.1 Основная литература
- 1. **Плотникова, Л.Я.** Сельскохозяйственная биотехнология : практикум / Л.Я. Плотникова. Омск : Изд-во ФГБОУ ВПО ОмГАУ им. П.А. Столыпина., 2021. 80 с.
- 2. **Кияшко Н.В.** Основы сельскохозяйственной биотехнологии: учеб.пособие для студентов очной и заочной форм обучения направлений подготовки 35.03.04 «Агрономия», 35.03.05 "Садоводство" Н.В. Кияшко; ФГБОУ ВПО «Приморская государственная сельскохозяйственная академия». Уссурийск, 2014. 110 с.

8.2 Дополнительная литература

1.Сельскохозяйственная биотехнология [Электронный ресурс] : учеб.- методич. пособ. для выполн. лаборат.-практ. занятий и самост. работы для студ. обуч. по напр. 35.03.04. "Агрономия", 35.03.05 "Садоводство" / Вологод. ГМХА, Каф.растениеводства ; сост.: Е. И. Куликова, О. В. Чухина. - Электрон.дан. (265 Кб). - Вологда ; Молочное : ВГМХА, 2014. - 29 с. - Систем.требования: Adobe Reader

Внешняя ссылка: https://molochnoe.ru/ebs/notes/463/download

- **2.** Сельскохозяйственная биотехнология: учебник для вузов, обуч. по с.-х., естественнонаучн. и пед. спец. / [В. С. Шевелуха и др.]; под ред. В. С. Шевелухи. 3-е изд., перераб. и доп. М.: Высшая школа, 2008. 708, [1] с.
- 3. Калашникова, Елена Анатольевна.

Практикум по сельскохозяйственной биотехнологии : учебное пособие для вузов по напр. и спец. агрономического образования / Е. А. Калашникова, Е. З. Кочиева, О. Ю. Миронова. - М. : КолосС, 2006. - 142, [1] с. - (Учебники и учеб.пособия для студентов высш. учеб. заведений). - Библиогр.: с. 105-106

8.3 Перечень информационных технологий, используемых при проведении научно-исследовательской работы, включая перечень программного обеспечения и информационных справочных систем

Лицензионноепрограммноеобеспечение:

Microsoft Windows XP / Microsoft Windows 7 Professional , Microsoft Office Professional 2003 / Microsoft Office Professional 2007 / Microsoft Office Professional 2010 STATISTICA Advanced + QC 10 for Windows

вт.ч. отечественное

Astra Linux Special Edition РУСБ 10015-01 версии 1.6.

1С:Предприятие 8. Конфигурация, 1С: Бухгалтерия 8 (учебная версия)

Project Expert 7 (Tutorial) for Windows

СПСКонсультантПлюс

KasperskyEndpointSecurity для бизнеса Стандартный

Свободно распространяемое лицензионное программное обеспечение:

OpenOffice

LibreOffice

7-Zip

Adobe Acrobat Reader

GoogleChrome

в т.ч. отечественное

Яндекс.Браузер

Информационные справочные системы

- Единое окно доступа к образовательным ресурсам– режим доступа: http://window.edu.ru/
 - ИПС «КонсультантПлюс» режим доступа: http://www.consultant.ru/
- Интерфакс Центр раскрытия корпоративной информации (сервер раскрытия информации) режим доступа: https://www.e-disclosure.ru/
- Информационно-правовой портал ГАРАНТ.RU режим доступа: http://www.garant.ru/
- Автоматизированная справочная система «Сельхозтехника» (web-версия) режим доступ: http://gtnexam.ru/

Профессиональные базы данных

- Научная электронная библиотека eLIBRARY.RU– режим доступа: http://elibrary.ru
- Наукометрическая база данных Scopus: база данных рефератов и цитирования— режим доступа:https://www.scopus.com/customer/profile/display.uri
- Официальный сайт Федеральной службыго сударственной статистики режим доступа: https://rosstat.gov.ru/ (Открытый доступ)
- Российская Академия Наук, открытый доступ к научным журналам режим доступа: http://www.ras.ru(Открытый доступ)
- Официальный сайт Министерства сельского хозяйства Российской Федерации режим доступа:http://mcx.ru/ (Открытый доступ)

Электронные библиотечные системы:

- о Электронный библиотечный каталог Web ИРБИС режим доступа: https://molochnoe.ru/cgi-
- bin/irbis64r_14/cgiirbis_64.exe?C21COM=F&I21DBNAM=STATIC&I21DBN=STATIC
 - о ЭБС ЛАНЬ режим доступа: https://e.lanbook.com/
 - о ЭБС Znanium.com режим доступа: https://new.znanium.com/
 - о ЭБС ЮРАЙТ режим доступа: https://urait.ru/
 - o 36C POLPRED.COM: http://www.polpred.com/
- о Электронная библиотека издательского центра «Академия»: https://www.academia-moscow.ru/elibrary/(коллекция СПО)
 - ЭБС ФГБОУ ВО Вологодская ГМХА режим доступа: https://molochnoe.ru/ebs/

9. Материально-техническое обеспечение дисциплины

Учебная аудитория для проведения занятий лекционного и семинарского типа (практические занятия); групповых и индивидуальных консультаций; текущего контроля и промежуточной аттестации

Оснащенность: Учебная мебель: столы -40, стулья -80, аудиторная доска, кафедра. Основное оборудование: экран для проектора 1 шт., проектор - 1 шт., компьютер в комплекте - 1 шт.

Учебная аудитория Лаборатория биотехнологии, для проведения лабораторных занятий. Оснащенность:

Учебная мебель: столы для реактивов -3, стулья -4, шкаф для хранения учебных материалов. - 1.

Основное оборудование: картофельное дерево КД10, холодильник, кондиционер, увлажнитель воздуха, штатив лабораторный д/фронт.работ ШФР. Учебная аудитория Лаборатория микроклонального размножения растений, для проведения лабораторных занятий

Оснашенность:

Учебная мебель: столы для приборов – 5, стулья – 3, шкаф для приборов – 1.

Основное оборудование: лаборатория микроклонального размножения растений, стол (для титрования HB-1200 ТК), холодильник NordNRT 144, таймер электрический недельный, электроплитка Псков-2, водонагреватель Thermex электрический аккумуляционный, осветитель, биодистиллятор электрический БЭ-4, весы ВЛТК 1100, скальпели, пинцеты, спиртовки, пробирки.

ОБЕСПЕЧЕНИЕ ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

Для обеспечения образования инвалидов и лиц с ограниченными возможностями здоровья реализация дисциплиныможет осуществляться в адаптированном виде, исходя из индивидуальных психофизических особенностей и по личному заявлению обучающегося, в части создания специальных условий.

В специальные условия могут входить: предоставление отдельной аудитории, необходимых технических средств, присутствие ассистента, оказывающего необходимую техническую помощь, выбор формы предоставления инструкции по порядку проведения текущего контроля и промежуточной аттестации, использование специальных технических средств, предоставление перерыва для приема пищи, лекарств и др.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

10. Карта компетенций дисциплины

10. Карта компетенции дисциплины						
Назван	ие дисциплины (код	(и на	азвание направления подготовки)			
Б1	О.34 Основы биотехно	олог	ии (направление подготовки 35.03.04	«Агрономия», про	офиль Технологі	ии производства продукции
_	иеводства)					
Цель ді	Цель дисциплины – освоение студентами теоретических знаний о клеточной биотехнологии, культуре invitro, знать осн					
			молекулярной биотехнологии и генной			
Задачи	дисциплины		ознакомить студента с основными до			
			инженерии растений и использовании н			зяйстве.
			обучить студента принципиал		5	етативного размножения -
				лучение в услови	ях invitro (в п	пробирке) растений, генетически
			идентичных исходному экземпляру).			
		дисі	циплины студент формирует и демонст			·
Компет			Перечень компонентов	Технологии	Форма	Ступени уровней освоения
Индекс	Формулировка		(планируемые результаты	формирования	оценочного	компетенции
			обучения)		средства	
			Общепрофессионали	·		T
ОПК-4	Способен		$ИД-1_{\text{опк4}}$ знать основы	Лекции	Тестирование	Пороговый
	реализовывать		молекулярной биологии, сущность			(удовлетворительный)
	современные		и задачи генетической инженерии в	Лабораторные	Контрольная	Знает основы молекулярной
	технологии	И	растениеводстве, культуру клеток,	занятия	работа	биологии, сущность и задачи
	обосновывать	ИХ	тканей и органов, процессы	Самостоятельная		генетической инженерии в
	применение	В	регуляции и саморегуляции у	работа	Устный ответ	растениеводстве, культуру
	профессиональной		растений;	***		клеток, тканей и органов,
	деятельности;		ИД-2 опк4 уметь получать	Интерактивные		процессы регуляции и
			безвирусный материал растений,	занятия		саморегуляции у растений;
			регулировать продукционный			т .
			процессы у растений			Продвинутый
			ИД- 3 _{опк4} владетьметодиками			(хорошо)
			синтеза незаменимых аминокислот,			Умеет получать безвирусный
			производства кормовых дрожжей и			материал растений,
			белков из водорослей и грибов.			регулировать продукционный процессы у растений
						процессы у растении Высокий
						(отлично) Владеет методиками синтеза
						незаменимых аминокислот,
						производства кормовых
						дрожжей и белков из
						водорослей и грибов.
						водорослен и гриоов.